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Abstract

In the past few years, advances in machine learning have
fueled an explosive growth of descriptive and generative
models of animal behavior. These new approaches offer higher
levels of detail and granularity than has previously been
possible, allowing for fine-grained segmentation of animals’
actions and precise quantitative mappings between an ani-
mal’s sensory environment and its behavior. How can these
new methods help us understand the governing principles
shaping complex and naturalistic behavior? In this review, we
will recap ways in which our ability to detect and model
behavior have improved in recent years, and consider how
these techniques might be used to revisit classical normative
theories of behavioral control.
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Introduction
Animal behavior is shaped by an interaction of past
experience, internal motivational state, and external
environmental cues. Behaviors critical for survival, such
as feeding and social interaction, are furthermore influ-
enced by the genetically encoded wiring of species-

specific neural circuitry. Given this diverse set of in-
fluences, the analysis of behavior informs scientific
progress in fields spanning genetics, ecology, neurosci-
ence, economics, and robotics. The theories and models
of behavior generated by these fields vary in their
objective, language, and level of mechanistic detail.
They can be broadly divided into categories of descrip-
tive models that identify what an agent did, generative
models that tell us how an agent can be expected to
www.sciencedirect.com
behave given a set of conditions, and normative models
that identify why a behavior occurred by defining the
underlying principles that inform its structure.

Machine learning tools for animal posture and behavior
analysis are becoming increasingly accessible to the
research community, fueling new approaches to the
quantification, andstudyof animal behavior.Manyof these
newly developed methods are descriptive models that
improve the throughput andgranularitywithwhichwecan
quantify behavior, bringing its analysis to the realm of big
data. An open question is how these methods can give us

insight into the organization and control of behavior itself,
in the form of generative and normative models. In this
review, we will briefly recount scientific applications of
descriptive behavioral analysis, before turning to how
detailedpose andbehavior datamight also be used tobuild
generative models and test classical theories about the
principles that shape behavioral organization.
Descriptive models: Turning video files into
data
In many applications, the use of computational methods
for behavior analysis can be likened to automation of
manufacturing: the things produced are not funda-
mentally different from what was around before, but

now they can be produced with greater precision and at
scale. Several recent reviews [1e8] have described the
use of modern computer vision or machine learning
methods to characterize the pose, kinematics, or actions
of behaving agents. These methods, particularly the
translation from pose to behavior, are areas of active
development in machine learning (see Box 1). At the
heart of many approaches is markerless pose estimation,
which characterizes animal posture in terms of a set of
experimenter-defined 2D or 3D “key points” [9e12].
Pose estimates or other features extracted from behavior

video can be used to quantify postural dynamics of an-
imals [13e15], or paired with supervised (experi-
menter-defined) behavior detection [16e18] or
unsupervised (data-defined) behavior discovery
[19e23] methods to segment continuous posture data
into actions (Figure 1a).

The practical advantage of these methods is twofold.
First, they accelerate data processing when applied at
scale. By training algorithms to detect behaviors of in-
terest, researchers can distill hundreds of hours of video

into precise and detailed records of animals’ actions that
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Box 1. Future challenges for descriptive models of behavior.

Performance: A particular challenge facing unsupervised behavior discovery is deciding what constitutes a “good” representation of behavior
[74]. Commonmetrics for evaluating the quality of an unsupervised behavior discovery method include agreement with human annotations, ability
to account for variance in neural data, and utility in distinguishing between strains or conditions (Figure 1b), however many articles apply these
only to in-house datasets, making it difficult to compare methods. Establishing benchmark datasets for evaluating behavior algorithms may help
overcome this issue [75].

Generalization: Behavior classifiers and pose estimators trained in one lab rarely perform well out-of-the-box when used by another lab, unless
the two groups standardize their data acquisition setup. Creating algorithms that can be tuned to new environments, or that are trained on larger
datasets, would help ensure replicability of the results of computational analyses.

Interpretability: A common complaint about machine learning methods is that they are a black box. However, automated methods could actually
become more transparent in their choices than human annotators, who can struggle to communicate their decision process during annotation.
Efforts to make human-interpretable behavior classification tools may help scientists have greater confidence in their results [76].

Long timescales: Behavior has structure over multiple scales: from the coordination of actions into sequences [77], to effects of priming [78],
habituation [79], satiety [80,81], and time of day [82,83]. Long timescales of behavior can be captured intrinsically by sequence learning [84] or
hierarchical models [34], or may be recovered post-hoc by coarse-graining of action sequences [85]. But there is still ample space for exploration
in this area.

Level of granularity: Neural recording datasets introduce another challenge for behavior analysis: not just finding the representation of behavior
that best captures observed postural variance, but finding the right level of granularity to account for observed neural activity. The optimal behavior
representation in this sense will likely be different for different brain regions, with some regions better explained by fine-grained, sub-second action
motifs, and other regions more correlated with an animal’s overall behavioral objective (such as aggression or reproduction.) How best to integrate
quantitative behavior analysis with neural imaging datasets is an exciting area of ongoing research.

Interacting agents:Multi-agent behavior poses unique challenges for analysis, as these datasets include times when animals are interacting and
times when each individual is behaving independently. This affects unsupervised methods in particular, as the relative positioning of agents is
sometimes critical for interpreting behavior and sometimes does not matter at all. We hypothesize that one way to overcome this challenge is to
base behavior discovery methods on forecasting models, which could be trained to incorporate postural information from an agent’s partner only
when that information is relevant to predicting what the agent does next.
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are ready for downstream analysis. In addition to saving
human effort, this approach can improve annotation
quality: whereas human annotators show substantial
within-individual and between-individual variability in
labeling behavior start and stop times [17], automated
algorithms are self-consistent. And second, computa-
tional behavior analyses can produce high temporal
resolution, highly granular descriptions of animals’ ac-

tions, surpassing what is feasible for a human anno-
tator [19e21].

The combined impact of automation and increased
granularity is beginning to change the way behavioral
experiments are designed and analyzed, with a growing
number of labs opting to collect long-term, high-
throughput recordings of animals in complex environ-
ments. Automating the frame-by-frame annotation of
animal behavior has enabled high-throughput screening
of hundreds of animals across strains, mutant lines, or

experimental perturbations [15,23e30]. Differences
between animal cohorts in these assays can most simply
be detected by identifying a change in the proportion of
time animals express one or more behaviors, or by a
change in the transition probability between pairs of
behaviors [24,25]. Difference in behavior can also be
Current Opinion in Neurobiology 2022, 74:102549
correlated with other within-cohort experimental mea-
sures, like gene expression [29].

Beyond the level of individual behaviors, differences
between cohorts may be identified by training a classi-
fier to distinguish animal groups given either postural
features or a histogram of expressed behaviors
[24,25,27]. The magnitude of differences between co-

horts can also be quantified and visualized to infer re-
lationships between them [25,27]. Interestingly, some
studies have used dimensionality reduction methods
(like principal component analysis or Fisher’s linear
discriminant analysis) to identify different behavioral
modes across individuals, mutant lines, or drug treat-
ments [25,26,29]. These analyses suggest a low-
dimensional “behavior manifold” might be learned
that can capture the variability in behavior expressions
across individuals.

Generative model and forecasting: The
Laplacian demon in the details
If we knew an animal’s entire sensory environment and
history, could we predict what it would do next? How far
into the future would our predictions hold? Generative
models can help us better understand how animals
www.sciencedirect.com
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Figure 1
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Unsupervised behavior analysis and its evaluation. (a) A typical unsupervised behavior analysis pipeline takes in continuous data (e.g. pose estimates)
and segments it into motifs. Usually data is first pre-processed to remove sources of variance that are not meaningful for behavior (such as the absolute
positions of the animals) and extract some representation of animal movement. These processed features are then segmented into motifs using some
form of clustering algorithm. (b) Different design choices in an unsupervised analysis produce different motifs: there is therefore a pressing need for ways
to evaluate the “usefulness” of unsupervised analysis methods. Three commonly used approaches are comparison of motifs to manual annotations, for
example, in terms of precision and recall (left), ability of motifs to predict neural activity (center), and ability to distinguish between animal species, strains,
or treatment groups based on the occurrence or patterning of motifs (right).
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integrate sensory cues and their own recent history to
determine their ongoing behavior. A generative model
captures the relationship between two probability dis-
tributions, specifically the probability distribution of
one signal conditioned on the value of another. In terms
of behavior, this might translate to learning a distribu-
tion over possible behavioral responses given an animal’s
past actions or its sensory environment.

Generative models can be used as a means of catego-
rizing behavior: for example, autoregressive Hidden
Markov models capture the statistics of time series
evolution, but their inferred hidden states can also be
used for unsupervised behavioral segmentation [20]. But
generative models have also been used to uncover how
animals’ sensory environment, state, and history shape
expression of behavior [31e34]. For example, fly court-
ship song type, previously thought to vary at random, can
be predicted by postural cues from the courted female

[31], and furthermore this sensory-evoked behavior is
better predicted when taking into account an estimate of
the singing male’s internal state [33].
www.sciencedirect.com
Animals often show preparatory movements or gradual
escalation of interactions from which we can predict of
future movementsdfor example, mice dart and tail-
rattle before initiating an attack. As their name im-
plies, generative models can also be used to generate
“realistic-looking” behavioral data, predicting an ani-
mal’s actions given initial conditions [32,34]; in ma-
chine learning, this area of research is called imitation

learning. Model-synthesized trajectories predict how
an animal would respond given an environment, pro-
vided that environment is close to the conditions the
model was trained on: for example, simulated flies
follow walls and perform wing extensions when they
encounter other simulated flies [34]. Trained models
that can forecast behavior are often hierarchical,
allowing them to capture structure in behavior on
multiple timescales. One exciting promise of these
models is that they provide continuous, behavior-
related signals of different degrees of granularity, that

can be contrasted with recorded neural dynamics to
identify neural correlates of behavior or internal
states [35].
Current Opinion in Neurobiology 2022, 74:102549
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Figure 2
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Normative models make predictions about the temporal organization of
behavior. (a) The marginal value theorem predicts that animals foraging in
a patchy environment should migrate to a new patch when their net rate of
energy accumulation within a patch (blue line) matches the mean rate of
energy accumulation across the environment (parallel red lines).
Figure adapted from Charnov, 1976. (b) In the resource holding potential
model of aggressive escalation, animals integrate evidence to estimate the
difference in fitness between fighters, and flee the encounter once their
estimate passes a threshold. One possible formulation of this strategy is
shown here, adapted from Enquist et al., 1990. The war of attrition model
further hypothesizes that animals’ motivation to obtain resources can
change their willingness to flee, indicated here by the shift of the red line.
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Normative models: What’s my motivation?
Why does behavior have the structure it does? A
normative model is one that uses some measure of value
or utility to derive predictions of how a system “ought
to” behave if driven by that utility. At its highest level,
we expect animal behavior to either directly or indirectly
further the survival of that animal’s genetic material.

While this maxim is quite broad, principles of survival
have informed many more specific theories of natural-
istic behavior control. We will review examples from
single-agent and dyadic behaviors, and discuss how
computational behavior analysis might enrich our
experimental investigation of these models. There is
also a rich literature on principles of collective behavior
[36,37], which will not be covered here.

Behavior of an agent in an environment
Exploration of new environments is a fundamental
behavioral drive, be it to establish territory, identify
Current Opinion in Neurobiology 2022, 74:102549
threats, or discover resources. Normative theories
predict that exploring animals balance the reward of
information gained with the cost of time passage [38]
or risk of injury or predation. Foraging behavior, an
extension of exploration, also encompasses an assort-
ment of value-based decision-making tasks [39e41].
During foraging, an animal makes dietary choices as to
what resources to pursue [42], and also must efficiently

use time and energy when collecting resources. In a
model environment of food patches, the marginal value
theorem determines the precise time to migrate to new
food sources, given full knowledge of the underlying
average reward rate of the environment [43,44]
(Figure 2a). At the opposite extreme, if nothing is
known about the structure of the environment, random
Lévy flight motion is optimal [45]. Factors such as food
source distribution, prey movement, and competition
with conspecifics also impact strategy. Foraging under
risk of predation introduces the further wrinkle of

balancing the energetic cost of monitoring the envi-
ronment with the survival cost of being caught by a
predator [46,47].
Behavior in pairs of interacting agents
Dyadic behavior can include both symmetric in-
teractions between members of a species and asym-
metric interactions such as predatoreprey behavior.
Predatory imminence theory suggests a topology of
defensive behavior, in which the type of behavior a prey
species expresses is shaped by the immediacy and

magnitude of predator threat [48] (Figure 3a). This
escalating organization of defensive behaviors is built
around a key conflict: that predators can be evaded
either by reducing detectability (through freezing) or
by overt escape actions that transiently increase
detectability. Because escape behavior draws attention
and interrupts ongoing foraging by the prey, an optimal
strategy finds a balance between these two defen-
sive behaviors.
Outside of predator-prey conflict, violence in nature
occurs predominantly between members of the same
species, and rarely results in serious injury. The survival
value of intra-species aggression has been questioned
since Darwin, who hypothesized that aggression ensures
that the fittest members of a species obtain greater
territories and resources. Subsequent theories further
posed that aggression could help balance distribution of
animals across available environment [49]. In social

species, establishment of dominance hierarchies is
thought to stabilize groups and create networks that
shape the flow of information among group members
[50,51]. An extensive literature in game theory has
explored the structure of aggression, and gave rise to the
concept of “evolutionarily stable strategies”: behavioral
strategies in a species that are stable to small pertur-
bations in the form of mutant strategies [52].
www.sciencedirect.com
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Behavioral escalation in predator-prey and within-species aggression contexts. (a) Predator imminence theory describes an organization of defensive
strategies in which level of predatory threat shifts the behavior animals express. Figure adapted from Fanselow & Lester, 1988. (b) Escalation of
aggressive encounters between conspecifics shows a similar scaling of behavior, a strategy thought to minimize risk of injury. Escalation could serve to
establish animals’ relative resource holding potentials, or could be a “war of attrition” process of animals communicating their level of commitment to a
contested resource.
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Normative models of aggression often focus on the
observation that, like defensive behavior, aggressive
behaviors vary in their intensity (Figure 3b). Escalation
of aggression could serve several functions. In the

“resource holding potential” hypothesis, escalation
allows animals to exchange information about relative
fitness while minimizing risk of injury, by only escalating
if the relative fitness of the pair remains unclear
(Figure 2b) [53,54]. This hypothesis predicts that ani-
mals more closely matched in size escalate aggression
further than more asymmetric pairs, a prediction that
holds to varying extents across species [55,56]. Alter-
natively, the “war of attrition” model [57] poses that
escalation signals the cost an animal is willing to pay for a
resource, explaining how manipulations such as food

deprivation might motivate an animal to escalate further
or faster [58]. Escalation may also simply reflect the
animal’s relative levels of aggression and fear [59].
Models of aggressive escalation were extensively inves-
tigated in the 1970s, 80s, and 90s, in species ranging
from dung beetles to hermit crabs to red deer; this work
is excellently reviewed in Ref. [60].
www.sciencedirect.com
Going forward
Computational behavior analysis is experiencing a
period of explosive growth, fueling and fueled by a push
among neuroscientists to study more complex and
naturalistic animal behaviors. Yet existing normative
models of behavior largely precede the computer vision
revolution in animal tracking. New behavior quantifi-
cation methods will allow more rigorous testing of pre-
dictions made by classical normative models, whereas

generative modeling provides methods for capturing
behavioral control policies based on precise quantifica-
tion of animals’ sensory environment and behavior. An
open challenge for modern behavior analysis is to re-
evaluate our normative theories of behavior in the
light of more plentiful data, to determine how useful
they are as descriptors of animals’ actions.

Towards this goal, the theoretical framework that has
been established around exploration and foraging stra-
tegies provides rich ground for experimental explora-

tion. Exploratory behavior and learning in neuroscience
are often studied in conceptual tasks that do not require
Current Opinion in Neurobiology 2022, 74:102549
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physical exploration, permitting neural correlates to be
measured [61,62]. An exciting promise of computational
behavior analysis is that it allows exploration to be
studied in complex physical environments such as
mazes [63,64], wheredin striking contrast to concep-
tual explorationdmice rapidly learn long sequences of
actions, and can show one-shot learning of their home
path out of the maze [64]. By tracking exploring ani-

mals’ posture, researchers can detect deliberative ac-
tions such as “vicarious trial and error,” when animals
pause to investigate options at a choice point [65,66].
Quantification of deliberative actions may help study
another normative theory of exploration, the principle of
effort minimization, which predicts that as an environ-
ment or scenario becomes familiar animals may swap
between decision strategies, balancing low-effort habit
and high-effort planning and simulation [67].

Analysis and generative modeling of animal actions and

sensory environments during naturalistic foraging could
also help determine how animals construct and update
their internal model of food availability in their envi-
ronment. For example, recent work has demonstrated
that imitation learning can capture learned foraging
behavior in a head-fixed task [62]. Elimination of the
behavior annotation bottleneck could also allow for
higher volume experiments testing the sensitivity of
foraging behavior to combinations of environmental pa-
rameters such as degree of patch structure, presence of
threat or conspecific cues, choices between food types,

or changes in food availability.

Normative theories of dyadic interactions have often
focused on the rules governing transitions between be-
haviors: either the switch from freezing to escape in
predator imminence theory, or the gradual escalation of
aggression in intra-species encounters. These pro-
gressions are challenging to study in the lab, as animals
show rapid habituation and priming after a few pre-
sentations of a threating stimulus or conspecific. With
automated analyses, classical assays like the resi-
denteintruder paradigm could be expanded to longer

timescales in enriched environments, so that animals
have time and space for more naturalistic encounters to
unfold [68].

Finally, one exciting area for exploration is to develop
theories and models for how competing motivational
signals should interact to shape behavior. Animal behavior
in the wild strikes a balance between competing drives:
hunger and thirst, predator defense, and social (repro-
ductive, parenting, and territorial) motivations. These
drives can be thought of as low-dimensional intervening

variables between sensation and action [69]: any single
drive can be affected by multiple sensory cues-for
example, both mating experience [70] and social isola-
tion [71] make mice more aggressive, and both dry food
and salt make mice thirsty. And drives can be linked to
Current Opinion in Neurobiology 2022, 74:102549
any learned behavior: both aggression and thirst can be
used to motivate nose-poking or lever-pressing in operant
tasks [72,73].

We cannot measure an animal’s aggressive motivation
directly, but we can apply experimental manipulations
that we know will alter aggressiondand also hunger,
thirst, stress, reproductive state, or time of daydand

measure resulting changes in behavior. Howmight these
different state manipulations interact? Before we can
generate hypotheses of how the brain is controlling
behavior, it is good to stop and ask: how complex is
behavior in the first place? If the annotation bottleneck
can be resolved, we might begin to use high-throughput
behavioral studies to ask whether intervening variables
of hunger, thirst, fear, or aggression are indeed the one-
dimensional signals we call them, or whether behavioral
control policies and their underlying neural drives are
more complex.
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